Integrating GIS and BI: a Powerful Way to Unlock Geospatial Data for Decision-Making

Professor Yvan Bedard, PhD, P.Eng. Centre for Research in Geomatics Laval Univ., Quebec, Canada

National Technical University of Athens Mai 27th, 2011

Origins

- Organisations worldwide invest hundreds of millions of dollars annually to acquire large amounts of data about the land, its resources and uses
- These data however prove difficult to use by managers who need:
 - aggregated information
 - spatial comparisons
 - fast synthesis over time
 - interactive exploration
 - geogr. knowledge discovery hypothesis dev
 - etc.

- trends analysis
- space-time correlations
- unexpected queries
- crosstab analysis

Barriers to make analysis with transactional systems

GIS and DBMS design are transactional by nature

- Oriented towards data acquisition, storing, updating, integrity checking, simple querying
- Transactional databases are usually normalized so duplication of data is kept to a minimum :
 - To preserve data integrity and simplify data update
- A strong normalization makes the analysis of data more complex :
 - High number of tables, therefore high number of joins between tables (less efficient).

- Long processing time
- Development of complex queries

Analytical approach vs transactional approach

No unique data structure is good for BOTH managing transactions and supporting complex queries. Therefore, two categories of databases must co-exist: transactional and analytical (E.F. Codd).

Example of co-existence: one source -> several datacubes

BI Market

 Business Intelligence exists since the early 1990s and its market is larger that the GIS market.

Today's Level of Integration

Integrating GIS and BI is a recent field with a lot of potential

Historical Epochs

1996-2000: pionneering early prototypes in universities Laval U. - Simon Fraser U. - U. Minnesota 2001-2004: early adopters advanced prototypes in universities first applications in industry 2005-...: maturing larger number of ad hoc applications SOLAP technologies to facilitate the development of SOLAP applications

2010-...: wide adoption
0ver 30 commercial products

Analytical System Architectures (ex. standard data warehouse)

Analytical System Architectures (ex. without data warehouse)

Dimension = axis of analysis organized hierarchically

Cube (hypercube) = all facts

A "sales" data cube

Fact: each unique combination of fine-grained or aggregated members and of their resulting measures

Ex.: sold for 2M\$ of blouses in Ottawa in 2010 Ex. : sold for 8M\$ of pants in Ontario in 2010

Data structures (MOLAP, ROLAP, HOLAP):

Multidimensional (proprietary)

- Relational implementation of datacubes
 - Client tool provides the multidimensional view
 - Star schemas, snowflake schemas, constellation schemas
- Hybrid solutions
- Query languages:
 - SQL = standard for transactional database
 - MDX = standard for datacubes

Spatial Datacube Concepts

Spatial dimensions

Geometric spatial Non-geometric spatial Mixed spatial dimension dimension dimension Canada Canada CB Québec NB Montréal Québec N.B. more concepts exist

Spatial Datacube Concepts

Spatial measures

Spatial dimension 1 Spatial dimension 2

N.B. more concepts exist

Metric operators

Distance Area Perimeter

. . .

Topological operators

Adjacent Within Intersect

Spatial Datacube and SOLAP

- Spatial OLAP (On-Line Analytical Processing)
- SOLAP is the most widely used tool to harness the power of spatial datacubes
 - It provides operators that don't exist in GIS
- SOLAP = generic software supporting rapid and easy navigation within spatial datacubes for the interactive exploration of spatio-temporal data having many levels of information granularity, themes, epochs and display modes which are synchronized or not: maps, tables and diagrams

Characteristics of SOLAP

Provides a high level of interactivity

- response times < 10 seconds independently of</p>
 - the level of data aggregation
 - today's vs historic or future data
 - measured vs simulated data

Ease-of-use and intuitiveness

- requires no SQL-type query language
- no need to know the underlying data structure
- Supports intuitive, interactive and synchronized exploration of spatio-temporal data for different levels of granularity in maps, tables and charts that are synchronized at will

The Power of SOLAP Lies on its Capability to Support Fast and Easy Interactive Exploration of Spatial Data

Select 1 year -> Select all years -> Select 4 years -> Multimap View: 7 clicks, 5 seconds

The Power of SOLAP Lies on its Capability to Support Fast and Easy Interactive Exploration of Spatial Data

Select all regions -> Drill-down on one region -> Roll-up -> Show Synchronized Views: 6 clicks, 5 seconds

The Power of SOLAP Lies on its Capability to Support Fast and Easy Interactive Exploration of Spatial Data

Change data -> Roll-up -> Roll-up -> Pivot ... : 6 click, 5 seconds

A Natural Evolution

Decisional Nature of data

Functionalities: Spatial datacube structure

 Contains spatial dimension organized in a hierarchy of spatial members with their geometry

Functionalities: Interactive Exploration supporting the true spirit of data drilling

 Drilling is executed on a member or on a selection of several members (at the same or at different levels of detail of a dimension).

Drilling by members at different level of details

Country members 🚞

Spatial drill on Canada member

Result in province members of Canada only

This is not OLAP drilling !

Result in opening the entire Province/states layer

rche industrielle ospatiales décisionnelles

Functionalities: Interactive Exploration Pivot on map

- Changes the orientation of the dimensions to produce a new display.
- Applied to a map = a different type of map
- Built-in rules must exist to produce the pivoting map corresponding to dimensions selection instantaneously without SQL

Functionalities: Exploration-Oriented Visualization and advanced maps

- Must support various types of maps (not only choropleth map)
- Advanced maps are used to represent many dimensions or many measures on a map.
- Built-in rules must exist to produce advanced maps instantaneously without SQL.

Functionalities: Exploration-oriented Visualization and synchronized displays

Functionalities: Exploration-oriented Visualization and intelligent automatic mapping

✓ Intelligent automatic mapping: ✓

- ✓ Supports user's knowledge
- \checkmark Generates coherent maps by using predefined display rules in accordance to the user's selection

display type

- ✓ Instantaneous display
- ✓ No SQL involved

Manual processing:

- Involve specific knowledge by the user (database, semiology, mapping)
- ✓ Is time-consuming

Example of Measured Benefits in a Project for Transport Quebec *M.J.Proulx, Intelli3 (2009)*

Annual Report :

<u>150</u> maps and tables S<u>tatic data</u>

200 000 maps and tables Dynamic applications

Updating (5 dayx-person)

Analysis & page editing (3 months-person) Updating (1 month-person)

Ad hoc queries continuously Delays to produce outputs

Application in intranet Fast response

Depend upon an expert in cartography

Easy user interface

Chaire de recherche inderstrielle Bases de données géospatiales décisionnelles

Solution géodécisionnelle :

Data structuration (15 days-person)

Approaches to Develop SOLAP Applications

- Ad hoc, proprietary programming specific to one application
- Combining GIS + OLAP capabilities
 - GIS-centric
 - OLAP-centric

- -The dominant tool offers its full capabilities but gets minimal capabilities from the other tool -GUI provided by the dominant tool
- Integrated SOLAP
 - Ad hoc programming (ex. using diverse open-source softwares)
 - SOLAP technology (the most efficient)

Off-the-Shelf Integrated SOLAP

Facilitates the deployment of a SOLAP application by offering built-in elements (e.g. Framework, operators, unique GUI)

, ble bil

lining

Loosely coupled

Strongly coupled

- ✓ 2 GUI vs common and unique GUI
- Built-in integration framework (no need to program the solution)
- Offers built-in functionalities to visualize and explore data
- No dominant component

30_____

Video of an Example of SOLAP

- Map4Decision (<u>www.intelli3.com</u>)
- 100% Java
- Reads MOLAP and ROLAP datacubes
- Reads all popular GIS files
- The 1st SOLAP on the market
- More than 30 SOLAP-like products exist
 - Map4Decision still leads with regards to
 - Variety of spatial datacubes
 - Multi-platform support
 - Integration of BI and GIS concepts
 - Ease of installation

VIDEOS

Conclusion

- GIS and BI have evolved in silos for many years
- R&D bridging both universes started mid-90s
- Market is reaching maturity
- A scientific community exists
- Different application development approaches
 - ad hoc
 - BI-centric
 - GIS-centric
 - Integrated

More R&D will bring even better solutions

More info at these web sites:

http://sirs.scg.ulaval.ca/yvanbedard/

http://www.spatialbi.com/

http://mdspatialdb.chair.scg.ulaval.ca/english/Eindex.asp

Technology transfer = Map4Decision (<u>www.intelli3.com</u>)

